
Package: zmisc (via r-universe)
September 5, 2024

Type Package

Title Vector Look-Ups and Safer Sampling

Version 0.2.3.9002

Author Magnus Thor Torfason

Maintainer Magnus Thor Torfason <m@zulutime.net>

Description A collection of utility functions that facilitate looking
up vector values from a lookup table, annotate values in at
table for clearer viewing, and support a safer approach to
vector sampling, sequence generation, and aggregation.

License MIT + file LICENSE

URL https://github.com/torfason/zmisc/,

https://torfason.github.io/zmisc/

Suggests desc, dplyr, haven, knitr, labelled, purrr, rmarkdown,
roxygen2, rprojroot, stringr, testthat, tibble

VignetteBuilder knitr

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://torfason.r-universe.dev

RemoteUrl https://github.com/torfason/zmisc

RemoteRef HEAD

RemoteSha 8b90b6485b21f0879558e41622215d53015aaeca

Contents
lookup . 2
notate . 3
zample . 4
zeq . 5
zingle . 6

1

https://github.com/torfason/zmisc/
https://torfason.github.io/zmisc/

2 lookup

Index 8

lookup Lookup values from a lookup table

Description

The lookup() function implements lookup of values (such as variable names) from a lookup table
which maps keys onto values (such as variable labels or descriptions).

The lookup table can be in the form of a two-column data.frame, in the form of a named vector,
or in the form of a list. If the table is in the form of a data.frame, the key column should be
named either key or name, and the value column should be named value (for the value). If the
lookup table is in the form of a named vector or list, the names are used as the key, and the
returned value is taken from the values in the vector or list.

The underlying lookup is done using base::match(), and all atomic data types except factor
are supported. Factors are omitted due to the ambiguity in what should be looked up (the values
or the levels). It is important that x, .default and the columns of lookup_table are all of the
same type (specifically of the same base::mode()). If the lookup table is specified as a vector
or list, only the character variables are supported, because name(lookup_table) is always of
mode character.

Original values are returned if they are not found in the lookup table. Alternatively, a .default can
be specified for values that are not found. Note that it is possible to specify NA as one of the keys to
look up NA values (only when using a data.frame as lookup table).

Any names or attributes of x are preserved.

The lookuper() function returns a function equivalent to the lookup() function, except that in-
stead of taking a lookup table as an argument, the lookup table is embedded in the function itself.

This can be very useful, in particular when using the lookup function as an argument to other
functions that expect a function which maps character->character (or other data types), but do
not offer a good way to pass additional arguments to that function.

Usage

lookup(x, lookup_table, ..., .default = x)

lookuper(lookup_table, ..., .default = NULL)

Arguments

x A vector whose elements are to be looked up.

lookup_table The lookup table to use.

... Reserved for future use.

.default If a value is not found in the lookup table, the value will be taken from .default.
This must be a vector of the same mode as x, and either of length 1 or the same
length as x. Useful values include x (the default setting), NA, or "" (an empty
string). Specifying .default = NULL implies that x will be used for missing
values.

notate 3

Value

The lookup() function returns a vector based on x, with values replaced with the lookup values
from lookup_table. Any values not found in the lookup table are taken from .default.

The lookuper() function returns a function that takes vectors as its argument x, and returns either
the corresponding values from the underlying lookup table, or the original values from x for those
elements that are not found in the lookup table (or looks them up from the default).

Examples

fruit_lookup_vector <- c(a = "Apple", b = "Banana", c = "Cherry")
lookup(letters[1:5], fruit_lookup_vector)
lookup(letters[1:5], fruit_lookup_vector, .default = NA)

mtcars_lookup_data_frame <- data.frame(
name = c("mpg", "hp", "wt"),
value = c("Miles/(US) gallon", "Gross horsepower", "Weight (1000 lbs)"))

lookup(names(mtcars), mtcars_lookup_data_frame)

A more complex example, with numeric and NA values
numeric_lookup_table <- data.frame(

key = c(1:5, NA), value = c(sqrt(1:5), 99999))
lookup(c(0:6, NA), numeric_lookup_table)

lookup_fruits <- lookuper(list(a = "Apple", b = "Banana", c = "Cherry"))
lookup_fruits(letters[1:5])
lookup_fruits_nomatch_na <-

lookuper(list(a = "Apple", b = "Banana", c = "Cherry"), .default = NA)
lookup_fruits_nomatch_na(letters[1:5])

notate Embed factor levels and value labels in values.

Description

This function adds level/label information as an annotation to either factors or labelled variables.
This function is called notate() rather than annotate() to avoid conflict with ggplot2::annotate().
It is a generic that can operate either on individual vectors or on a data.frame.

When printing labelled variables from a tibble in a console, both the numeric value and the text
label are shown, but no variable labels. When using the View() function, only variable labels are
shown but no value labels. For factors, there is no way to view the integer levels and values at the
same time.

In order to allow the viewing of both variable and value labels at the same time, this function con-
verts both factor and labelled variables to character, including both numeric levels (labelled
values) and character values (labelled labels) in the output.

4 zample

Usage

notate(x)

Arguments

x The object (either vector or date.frame of vectors), that one desires to annotate
and/or view.

Value

The processed data.frame, suitable for viewing, in particular through the View() function.

zample Sample from a vector in a safe way

Description

The zample() function duplicates the functionality of sample(), with the exception that it does
not attempt the (sometimes dangerous) user-friendliness of switching the interpretation of the first
element to a number if the length of the vector is 1. zample() always treats its first argument as a
vector containing elements that should be sampled, so your code won’t break in unexpected ways
when the input vector happens to be of length 1.

Usage

zample(x, size = length(x), replace = FALSE, prob = NULL)

Arguments

x The vector to sample from

size The number of elements to sample from x (defaults to length(x))

replace Should elements be replaced after sampling (defaults to false)

prob A vector of probability weights (defaults to equal probabilities)

Details

If what you really want is to sample from an interval between 1 and n, you can use sample(n) or
sample.int(n) (but make sure to only pass vectors of length one to those functions).

Value

The resulting sample

zeq 5

Examples

For vectors of length 2 or more, zample() and sample() are identical
set.seed(42); zample(7:11)
set.seed(42); sample(7:11)

For vectors of length 1, zample() will still sample from the vector,
whereas sample() will "magically" switch to interpreting the input
as a number n, and sampling from the vector 1:n.
set.seed(42); zample(7)
set.seed(42); sample(7)

The other arguments work in the same way as for sample()
set.seed(42); zample(7:11, size=13, replace=TRUE, prob=(5:1)^3)
set.seed(42); sample(7:11, size=13, replace=TRUE, prob=(5:1)^3)

Of course, sampling more than the available elements without
setting replace=TRUE will result in an error
set.seed(42); tryCatch(zample(7, size=2), error=wrap_error)

zeq Generate sequence in a safe way

Description

The zeq() function creates an increasing integer sequence, but differs from the standard one in that
it will not silently generate a decreasing sequence when the second argument is smaller than the
first. If the second argument is one smaller than the first it will generate an empty sequence, if the
difference is greater, the function will throw an error.

Usage

zeq(from, to)

Arguments

from The lower bound of the sequence

to The higher bound of the sequence

Value

A sequence ranging from from to to

6 zingle

Examples

For increasing sequences, zeq() and seq() are identical
zeq(11,15)
zeq(11,11)

If second argument equals first-1, an empty sequence is returned
zeq(11,10)

If second argument is less than first-1, the function throws an error
tryCatch(zeq(11,9), error=wrap_error)

zingle Return the single (unique) value found in a vector

Description

The zingle() function returns the first element in a vector, but only if all the other elements are
identical to the first one (the vector only has a zingle value). If the elements are not all identical,
it throws an error. The vector must contain at least one non-NA value, or the function errors out as
well. This is especially useful in aggregations, when all values in a given group should be identical,
but you want to make sure.

Usage

zingle(x, na.rm = FALSE)

Arguments

x Vector of elements that should all be identical

na.rm Should NA elements be removed prior to comparison

Details

Optionally takes a na.rm parameter, similarly to sum, mean and other aggregate functions. If TRUE,
NA values will be removed prior to comparing the elements, so the function will accept input values
that contain a combination of the single value and any NA values (but at least one non-NA value is
required).

Only values are tested for equality. Any names are simply ignored, and the result is an unnamed
value. This is in line with how other aggregation functions handle names.

Value

The zingle element in the vector

zingle 7

Examples

If all elements are identical, all is good.
The value of the element is returned.
zingle(c("Alpha", "Alpha", "Alpha"))

If any elements differ, an error is thrown
tryCatch(zingle(c("Alpha", "Beta", "Alpha")), error=wrap_error)

if (require("dplyr", quietly=TRUE, warn.conflicts=FALSE)) {
d <- tibble::tribble(
~id, ~name, ~fouls,
1, "James", 3,
2, "Jack", 2,
1, "James", 4

)

If the data is of the correct format, all is good
d %>%

dplyr::group_by(id) %>%
dplyr::summarise(name=zingle(name), total_fouls=sum(fouls))

}

if (require("dplyr", quietly=TRUE, warn.conflicts=FALSE)) {
If a name does not match its ID, we should get an error
d[1,"name"] <- "Jammes"
tryCatch({
d %>%

dplyr::group_by(id) %>%
dplyr::summarise(name=zingle(name), total_fouls=sum(fouls))

}, error=wrap_error)
}

Index

lookup, 2
lookup(), 2, 3
lookuper (lookup), 2
lookuper(), 2, 3

notate, 3

sample(), 4

zample, 4
zample(), 4
zeq, 5
zeq(), 5
zingle, 6
zingle(), 6

8

	lookup
	notate
	zample
	zeq
	zingle
	Index

